The goal of {staroddi} is:
You can install the development version of staroddi from GitHub with:
# install.packages("devtools")
devtools::install_github("einarhjorleifsson/staroddi")
This is a basic example which shows you how to read a Star-Oddi file into R:
library(staroddi)
## basic example code
dst <- read_dst(system.file("demos/1M9380.DAT", package="staroddi"))
dst
#> # A tibble: 29,963 × 7
#> .rid time temp depth dst_id audkenni utgafa
#> * <int> <dttm> <dbl> <dbl> <chr> <chr> <int>
#> 1 1 2008-06-25 21:47:00 20.6 1.27 1M9380 ISL.MILLI. 1
#> 2 2 2008-06-25 22:07:00 NA 1.27 1M9380 ISL.MILLI. 1
#> 3 3 2008-06-25 22:27:00 NA 1.27 1M9380 ISL.MILLI. 1
#> 4 4 2008-06-25 22:47:00 18.9 1.27 1M9380 ISL.MILLI. 1
#> 5 5 2008-06-25 23:07:00 NA 1.27 1M9380 ISL.MILLI. 1
#> 6 6 2008-06-25 23:27:00 NA 1.27 1M9380 ISL.MILLI. 1
#> 7 7 2008-06-25 23:47:00 17.9 1.27 1M9380 ISL.MILLI. 1
#> 8 8 2008-06-26 00:07:00 NA 1.27 1M9380 ISL.MILLI. 1
#> 9 9 2008-06-26 00:27:00 NA 1.27 1M9380 ISL.MILLI. 1
#> 10 10 2008-06-26 00:47:00 16.1 1.04 1M9380 ISL.MILLI. 1
#> # … with 29,953 more rows
attributes(dst)$meta
#> # A tibble: 14 × 3
#> id var val
#> <chr> <chr> <chr>
#> 1 0 Date-time: 15.12.2010 12:01:48
#> 2 1 Recorder: 1M9380
#> 3 2 File type: 1
#> 4 3 Columns: 4
#> 5 4 Channels: 2
#> 6 5 Field separation: 0
#> 7 6 Decimal point: 1
#> 8 7 Date def.: 0 1
#> 9 8 Time def.: 0
#> 10 9 Channel 1: Temperature(°C) Temp(°C) 3 1
#> 11 10 Channel 2: Depth(m) Depth(m) 2 2
#> 12 11 Reconvertion: 1
#> 13 19 Line color: 1 2 3 4
#> 14 30 Trend Type Number: 1