Skip to contents
library(fishvice)
rbx <- mup_rbx("/u2/reikn/Tac/2022/01-cod/ass/mup/smx")
rbx
#> $rby
#> # A tibble: 73 × 23
#>     year  fbar    hr    pY    oY   ssb  eggp  bio2  bio1   bio
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1  1955 0.348 0.261  539.  545.  726.  27.9 1622. 1671. 2090.
#>  2  1956 0.346 0.268  462.  487.  584.  21.9 1416. 1466. 1818.
#>  3  1957 0.387 0.278  454.  455.  575.  21.6 1259. 1339. 1640.
#>  4  1958 0.436 0.313  508.  517.  690.  25.3 1243. 1373. 1650.
#>  5  1959 0.384 0.290  437.  459.  639.  24.0 1219. 1300. 1580.
#>  6  1960 0.428 0.284  475.  470.  584.  21.8 1264. 1331. 1658.
#>  7  1961 0.401 0.264  388.  377.  399.  13.6 1104. 1055. 1431.
#>  8  1962 0.403 0.266  394.  389.  505.  18.5 1130. 1174. 1464.
#>  9  1963 0.460 0.315  408.  409.  460.  17.4  974. 1059. 1299.
#> 10  1964 0.521 0.361  417.  437.  420.  16.8  890.  979. 1211.
#> # ℹ 63 more rows
#> # ℹ 13 more variables: PredictedRecruitment <dbl>, r <dbl>, N1st <dbl>,
#> #   N3 <dbl>, N6 <dbl>, pU1 <dbl>, oU1 <dbl>, pU2 <dbl>, oU2 <dbl>, hr2 <dbl>,
#> #   run <chr>, model <chr>, assyear <dbl>
#> 
#> $rbya
#> # A tibble: 1,022 × 23
#>     year   age       n       f    oC     pC      rC    cW  ssbW    sW    mat
#>    <dbl> <dbl>   <dbl>   <dbl> <dbl>  <dbl>   <dbl> <dbl> <dbl> <dbl>  <dbl>
#>  1  1955     1 240881  NA         NA    NA  NA         NA    NA    15 NA    
#>  2  1955     2 175583  NA         NA    NA  NA         NA    NA   141 NA    
#>  3  1955     3 151014   0.0623  4790  8278. -0.487    827   645   250  0.019
#>  4  1955     4 211538   0.177  25164 31180. -0.209   1307  1019   588  0.022
#>  5  1955     5 199652   0.240  46566 38758.  0.180   2157  1833  1439  0.033
#>  6  1955     6 110948   0.250  28287 22374.  0.228   3617  3183  2901  0.181
#>  7  1955     7  31896.  0.310  10541  7741.  0.284   4638  4128  3923  0.577
#>  8  1955     8  20440.  0.372   5224  5789. -0.0900  5657  5657  4944  0.782
#>  9  1955     9   9573.  0.414   2467  2960. -0.142   6635  6635  5923  0.834
#> 10  1955    10  77118.  0.500  25182 27712. -0.0930  6168  6168  6168  0.96 
#> # ℹ 1,012 more rows
#> # ℹ 12 more variables: m <dbl>, z <dbl>, pU1 <dbl>, oU1 <dbl>, rU1 <dbl>,
#> #   pU2 <dbl>, oU2 <dbl>, rU2 <dbl>, run <chr>, model <chr>, assyear <dbl>,
#> #   yc <dbl>
#> 
#> $rba
#> # A tibble: 14 × 12
#>      age meansel progsel SigmaC sigmaU1      qU1   pU1 sigmaU2         qU2   pU2
#>    <dbl>   <dbl>   <dbl>  <dbl>   <dbl>    <dbl> <dbl>   <dbl>       <dbl> <dbl>
#>  1     1  NA     NA      NA       0.414 6.76e-16  3     NA         1   e+0  1   
#>  2     2  NA     NA      NA       0.267 1.79e-11  2.30  NA         1   e+0  1   
#>  3     3   0.106  0.0908  0.229   0.248 1.67e-10  2.19   0.242     1.12e-9  2.01
#>  4     4   0.358  0.283   0.182   0.264 1.15e- 9  2.08   0.268     2.20e-9  2.01
#>  5     5   0.586  0.502   0.155   0.217 6.57e- 8  1.78   0.194     8.41e-7  1.53
#>  6     6   0.780  0.811   0.139   0.162 6.35e- 6  1.41   0.162     5.85e-5  1.18
#>  7     7   0.977  0.989   0.133   0.156 1.75e- 5  1.36   0.179     1.69e-4  1.09
#>  8     8   1.16   1.22    0.134   0.170 8.69e- 5  1.22   0.223     2.17e-4  1.09
#>  9     9   1.21   1.21    0.144   0.194 2.46e- 4  1.11   0.236     2.87e-4  1.06
#> 10    10   1.29   1.27    0.165   0.211 6.45e- 4  1      0.238     4.69e-4  1   
#> 11    11   1.30   1.26    0.199   0.211 6.45e- 4  1      0.238     4.69e-4  1   
#> 12    12   1.35   1.59    0.256   0.211 6.45e- 4  1      0.238     4.69e-4  1   
#> 13    13   1.35   1.59    0.350   0.211 6.45e- 4  1      0.238     4.69e-4  1   
#> 14    14   1.35   1.59    0.508   0.211 6.45e- 4  1     NA         1   e+0  1   
#> # ℹ 2 more variables: run <chr>, model <chr>
#> 
#> $opr
#> # A tibble: 3,358 × 8
#>     year   age run   assyear fleet     o     p       r
#>    <dbl> <dbl> <chr>   <dbl> <chr> <dbl> <dbl>   <dbl>
#>  1  1955     1 smx      2022 catch NA    NA    NA     
#>  2  1955     2 smx      2022 catch NA    NA    NA     
#>  3  1955     3 smx      2022 catch  8.47  9.02 -0.487 
#>  4  1955     4 smx      2022 catch 10.1  10.3  -0.209 
#>  5  1955     5 smx      2022 catch 10.7  10.6   0.180 
#>  6  1955     6 smx      2022 catch 10.3  10.0   0.228 
#>  7  1955     7 smx      2022 catch  9.26  8.95  0.284 
#>  8  1955     8 smx      2022 catch  8.56  8.66 -0.0900
#>  9  1955     9 smx      2022 catch  7.81  7.99 -0.142 
#> 10  1955    10 smx      2022 catch 10.1  10.2  -0.0930
#> # ℹ 3,348 more rows
#> 
#> $std
#> # A tibble: 469 × 4
#>    index name                  value std.dev
#>    <int> <chr>                 <dbl>   <dbl>
#>  1     1 logdeltaQ1March       0.655  0.133 
#>  2     2 lnMigrationAbundance  9.37   0.365 
#>  3     3 lnMigrationAbundance  9.63   0.455 
#>  4     4 lnMigrationAbundance  9.31   0.478 
#>  5     5 lnMigrationAbundance  9.73   0.158 
#>  6     6 lnMigrationAbundance  1      0.0515
#>  7     7 lnMigrationAbundance 10.3    0.134 
#>  8     8 lnMigrationAbundance  9.52   0.245 
#>  9     9 lnMigrationAbundance  9.70   0.159 
#> 10    10 lnMigrationAbundance  8.61   2.37  
#> # ℹ 459 more rows
#> 
#> $par
#> $par$obj
#>          npar     objective  max_gradient 
#>  2.500000e+02 -2.079749e+03  7.622921e-05 
#> 
#> $par$logdeltaQ1March
#> [1] 0.6551629
#> 
#> $par$logMisreportingRatio
#> [1] 0
#> 
#> $par$logFoldestmult
#> [1] 0
#> 
#> $par$logMoldest
#> [1] -1.6
#> 
#> $par$logMmultiplier
#> [1] 0
#> 
#> $par$lnMigrationAbundance
#>  [1]  9.370119  9.634295  9.307920  9.730100  1.000015 10.312765  9.518669
#>  [8]  9.703629  8.609403  9.038309 10.302203  8.622908
#> 
#> $par$lnMeanRecr
#> [1] 12.37946
#> 
#> $par$lnRecr
#>  [1]  0.01259485  0.29940208  0.64578637 -0.03700625  0.20603841 -0.24218922
#>  [7]  0.08281672  0.21439603  0.32014709  0.37953902  0.69765182  0.07081169
#> [13]  0.40732273  0.11847460  0.19099492 -0.11665855  0.55509592  0.15945558
#> [19]  0.48622549  0.84380867 -0.10150117  0.34500331  0.40647507 -0.12051210
#> [25] -0.08939176 -0.13464360  0.36799133 -0.12716708 -0.13541702  0.64647032
#> [31]  0.45935383  0.09831486 -0.50265100 -0.19610370 -0.34132278  0.06675745
#> [37] -0.23413941 -0.67280424 -0.09189857  0.00540316 -0.52903228 -0.00489500
#> [43] -0.73519837  0.01927540 -0.05823278 -0.01648118  0.08996608 -0.58983630
#> [49] -0.06135616 -0.19745639 -0.48809334 -0.22269369 -0.32491044 -0.23599646
#> [55]  0.04994250  0.11650714 -0.20947094  0.05919857 -0.10594622 -0.51803713
#> [61] -0.06672524 -0.02366625 -0.38177254 -0.11709019 -0.21142897  0.11805725
#> [67] -0.07537884 -0.22217310
#> 
#> $par$lnMeanInitialpop
#> [1] 10.31795
#> 
#> $par$lnInitialpop
#>  [1]  1.75792258  1.60718174  1.94421215  1.88638439  1.29886866  0.05230127
#>  [7] -0.39268604 -1.15124969  0.93515187 -1.55837586 -1.86119297 -1.70698461
#> [13] -2.81153346
#> 
#> $par$EstimatedSelection
#>              [,1]        [,2]         [,3]       [,4]
#>  [1,] -2.13362866 -2.70820358 -3.077679264 -2.8646891
#>  [2,] -1.09029299 -1.10686633 -1.742390685 -1.7282283
#>  [3,] -0.78553741 -0.54541822 -0.952375789 -1.1543171
#>  [4,] -0.74259609 -0.18718634 -0.548053579 -0.6746539
#>  [5,] -0.53005322  0.04817375 -0.294972234 -0.4763505
#>  [6,] -0.34747714  0.19999966 -0.163962647 -0.2628952
#>  [7,] -0.24064591  0.17529451 -0.064880416 -0.2781562
#>  [8,] -0.05220447  0.12500737 -0.007185597 -0.2286255
#>  [9,]  0.06417325 -0.05901586  0.017562472 -0.2344359
#> 
#> $par$Catchlogitslope
#> [1] 1
#> 
#> $par$Catchlogitage50
#> [1] 5
#> 
#> $par$selslope
#> [1] 2.6
#> 
#> $par$fullselwt
#> [1] 1750
#> 
#> $par$logSigmaCmultiplier
#> [1] 0.2366006
#> 
#> $par$AbundanceMultiplier
#> [1] 0
#> 
#> $par$lnMeanEffort
#> [1] -0.3383914
#> 
#> $par$lnEffort
#>  [1] -0.303400505 -0.307881151 -0.196185549 -0.077660869 -0.204299582
#>  [6] -0.094129934 -0.159229073 -0.155004073 -0.023538863  0.101046365
#> [11]  0.178727448  0.098184057  0.026047028  0.182136359 -0.028304031
#> [16]  0.182275202  0.360074955  0.354726140  0.405799845  0.436406986
#> [21]  0.427129399 -0.006670291 -0.216935469 -0.430938273 -0.485064720
#> [26] -0.385535597 -0.145282892 -0.014402116 -0.081272923 -0.151120387
#> [31] -0.035784184  0.159215870  0.216780360  0.236714124  0.043068195
#> [36]  0.057167815  0.232355574  0.338544779  0.318969144 -0.069895748
#> [41]  0.082457676  0.033179574  0.055360370  0.246381006  0.407265252
#> [46]  0.421833861  0.340963938  0.150150016  0.128129248  0.191541365
#> [51]  0.147128925  0.093157912  0.009806820 -0.139026390 -0.068336341
#> [56] -0.232207749 -0.302101686 -0.284992753 -0.208760778 -0.317258438
#> [61] -0.359848390 -0.336398024 -0.332350853 -0.252068287 -0.157105560
#> [66] -0.035220213 -0.064513916
#> 
#> $par$meanlogSurvivors
#> [1] 13
#> 
#> $par$logSurvivors
#>  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 
#> $par$SurveyPowerest
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
#> [1,] 3.000000 2.303628 2.189561 2.079890 1.780958 1.409767 1.356043 1.220812
#> [2,] 2.000276 2.000276 2.012178 2.010661 1.530137 1.181119 1.094731 1.086668
#>          [,9]    [,10]
#> [1,] 1.113046 2.000276
#> [2,] 1.062055 2.000276
#> 
#> $par$surveybiopow1
#> [1] 1
#> 
#> $par$surveybiopow2
#> [1] 1
#> 
#> $par$SigmaSurveypar
#> [1] -0.3519848 -0.2626181
#> 
#> $par$SurveylnQest
#>             [,1]        [,2]      [,3]      [,4]      [,5]       [,6]
#> [1,] -34.9301429 -24.7437754 -22.51541 -20.58427 -16.53858 -11.967399
#> [2,]  -0.6893003  -0.6893003 -20.61289 -19.93345 -13.98870  -9.746938
#>            [,7]      [,8]      [,9]     [,10]
#> [1,] -10.953542 -9.351203 -8.310686 -7.345710
#> [2,]  -8.686187 -8.435497 -8.157412 -7.665411
#> 
#> $par$surveylogitslope
#> [1] 2 2
#> 
#> $par$surveylogitage50
#> [1] 1 1
#> 
#> $par$Surveycorr1
#> [1] 0.4613425
#> 
#> $par$Surveycorr2
#> [1] 0.6710178
#> 
#> $par$logSigmaSurvey
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8  -2.8  -2.8  -2.8  -2.8  -2.8
#> [2,] -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0  -1.0  -1.0  -1.0  -1.0  -1.0
#> 
#> $par$logSigmaSurveybio
#> [1] -1.150026 -1.150026
#> 
#> $par$estSSBRecParameters1
#> [1] 12.60317
#> 
#> $par$estSSBRecParameters2
#> [1] 4.787492
#> 
#> $par$estSSBRecParameters3
#> [1] -1.339013
#> 
#> $par$estSSBRecParameters4
#> [1] -2.302585
#> 
#> $par$estSSBRecParameters5
#> [1] 0.01
#> 
#> $par$estSSBRecParameters6
#> [1] 1750
library(tidyverse)
rbx$opr %>% 
  filter(!is.na(age),
         between(year, 1985, 2022)) %>% 
  filter(fleet %in% c("U1", "U2")) %>% 
  mutate(sign = ifelse(r > 0, TRUE, FALSE)) %>% 
  ggplot() +
  theme_bw() +
  geom_bar(aes(year, r, fill = sign), stat="identity") +
  facet_grid(age ~ fleet) +
  scale_fill_brewer(palette = "Set1") +
  scale_x_continuous(breaks=seq(1985, 2030,by=10)) +
  labs(x= NULL ,y="log deviations") +
  theme(legend.position = "none")

rbx$opr %>% 
  filter(is.na(age),
         between(year, 1985, 2022)) %>% 
  # temporary fix, need to fix upstream
  filter(fleet %in% c("catch", "U1", "U2")) %>% 
  mutate(sign = ifelse(r > 0, TRUE, FALSE)) %>% 
  ggplot() +
  theme_bw() +
  geom_bar(aes(year, r, fill = sign), stat="identity") +
  facet_grid(. ~ fleet) +
  scale_x_continuous(breaks=seq(1985, 2030,by=10)) +
  labs(x= NULL ,y="log deviations") +
  scale_fill_brewer(palette = "Set1") +
  theme(legend.position = "none")