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Statistical models consolidate data from various sources 
by using them simultaneously to estimate parameters. The 
importance of using all data in a single model has been 
emphasised by several authors (Methot 1989; Demyanov et 
al. 2006) but, although the benefits are clear, it is certainly 
not without problems, including the question of variance 
estimation, model mis-specification and weighting of all data 
sources (Stefansson 2003; Francis 2011; Maunder and 
Punt 2013). In the context of complex population dynamics 
models of exploited marine species, multiple data sources 
with widely different properties are used routinely in the 
estimation process. 

Variance estimates of parameters in non-linear models 
have commonly been derived from the inverted Hessian 
matrix at the optimum, when the method of least squares 
(or maximum likelihood) is employed for parameter estima-
tion. Alternatively the Jacobian matrix of the residuals can 
be used. Several conditions need to be satisfied for statis-
tical inference, e.g. confidence statements to hold in the 
finite-sample case. First, the model needs to be correct. 
Second, variance assumptions, i.e. homoscedasticity and 
knowledge of the ratios of variances in individual datasets, 
need to be appropriate. 

Methods of estimating variances in fish stock assess-
ment models have been discussed and evaluated by 
many authors, including Gavaris et al. (2000), Gavaris 

and Ianelli (2001), Magnusson et al. (2013) and Patterson 
et al. (2001). When the distributional properties of the 
data are not well understood or the models are incorrect, 
Hessian-based approaches have been seen to fail in 
several examples in fishery science (Patterson et al. 
2001). Although this may seem to contradict the theoret-
ical statements, the assumptions – e.g. in Jennrich (1969) – 
include independence of observations, a unique minimum, 
identically distributed errors and, of course, the results 
are only asymptotic. Any of these assumptions may fail. 
It follows that for problems in fishery science one cannot 
assume a priori that a Hessian-based method will give 
reasonable results. For example, disregarding correla-
tion structure when present has been found potentially 
to lead to incorrect conclusions in single-species assess-
ments, sometimes with serious consequences (Myers and 
Cadigan 1995). Similarly, multimodal likelihood functions 
have been seen in real applications (Richards 1991) and 
typically correspond to incorrect model assumptions that 
are not detected with traditional analysis (Stefansson 2003) 
but may potentially be detected if histograms of bootstrap 
parameter estimates also become multimodal (see example 
in Hannesson et al. 2009). 

Many of the limitations of the Hessian-based approaches 
have been met by alternative methods. In particular, models 
developed using the Bayesian framework (as discussed in 
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e.g. Punt and Hilborn 1997) provide an elegant formulation 
of uncertainty as posterior distributions of the quantity of 
interest. In all but trivial cases the posterior distribution must 
be estimated numerically with methods such as Markov 
chain Monte Carlo. With the commoditisation of computers 
in conjunction with the development of frameworks such as 
BUGS (Spiegelhalter et al. 1996) and ADMB (Fournier et 
al. 2012), the Bayesian framework has become a popular 
alternative to Hessian-based uncertainty methods. The 
attraction of the Bayes inference stems, to some degree, 
from the ability to include prior belief/knowledge into the 
model as explicit distributions. Various sources (e.g. Chen 
et al. 2000; Millar 2002) suggest, however, that consider-
able care must be taken when choosing model priors to 
avoid mis-specification and suggest a suite of robust priors 
applicable in fisheries model setting. 

Alternative frequentist approaches to Hessian-based 
parameter variance estimation include bootstrap methods 
(Efron 1979; Efron and Tibshirani 1994). The simplest 
bootstrap method assumes that the data are indepen dent 
measurements without correlation. However, semi-parametric 
approaches have also been developed to sample residuals 
from a model, possibly from a distribution (parametric 
bootstrap) or with a known correlation structure (Davison and 
Hinkley 1997). 

This paper demonstrates a novel use of bootstrapping to 
address complex and disparate data issues. The approach 
is generic, but it has special application to statistical models 
of (multiple and interacting) marine populations such as 
those developed within the Gadget framework. Gadget is 
a statistical age–length-structured modelling environment 
originally proposed by Stefansson and Palsson (1998), 
combining concepts from several earlier methods (Gavaris 
1988; Methot 1989; Tjelmeland and Bogstad 1989; Bogstad 
et al. 1992), described in Begley (2004) and subsequently 
used in multiple fisheries applications (e.g. Björnsson 
and Sigurdsson 2003; Taylor et al. 2007; Lindstrøm et al. 
2009). The protocol used in Gadget to estimate likelihood 
component weights and optimise model parameters is 
described in detail in Taylor et al. (2007) and the weighting 
protocol is based on that described in Stefansson (1998) 
and Stefansson (2003). 

In the following sections the development of an elemen-
tary sampling unit used in the bootstrap is described. 
The methodology is applied to a Gadget model for cod in 
Icelandic waters (the standard model from Taylor et al. 
2007) and contrasted with a more traditional Hessian-based 
approximation of variance. 

Methods

Develo pment of an elementary sampling unit
Statistical fisheries models may involve the use of a large 
number of data from a variety of sources. Every sample 
from each data source can be classified according to 
sampling location and time. A model such as Gadget 
operates on certain time-steps and also uses some 
spatial units. Within any modelled spatio-temporal unit 
there will normally be several data samples. For any 
bootstrap method the first question is, therefore, what the 
sampling unit should be. A unit of measurement in marine 

studies tends to be based on a single fish and elemen-
tary resampling might bootstrap on individual fish (as in 
e.g. Gudmundsdóttir et al. 1988). Doing this assumes that 
all individually measured fish are independent, which is 
invalid for several reasons (Pennington and Volstad 1994; 
Hrafnkelsson and Stefansson 2004). Resampling entire 
fish samples within a haul (W Singh, Science Institute, 
University of Iceland, Reykjavik, unpublished data) can 
potentially be used to account for this intra-haul correlation. 
Appropriate analyses of variance can correspondingly be 
used to evaluate these effects (Helle and Pennington 2004; 
De Croos and Stefansson 2011) and, when combining 
samples, alternatives to simple sums or means may be 
needed for aggregation (Babak et al. 2007). However, 
considering samples as units may not be quite enough, 
since fish at close geographic locations will also tend to be 
similar due to a fine-scale spatial structure that cannot be 
modelled easily (e.g. Stefansson and Palsson 1997a).

In addition to the sampling unit problem, one needs to 
take into account the variety of data sources. Biological 
samples from commercial catches may be collected on a 
fine temporal and spatial scale whereas scientific surveys 
are typically conducted only once or twice a year and 
different surveys may or may not overlap spatially. Other 
datasets such as species composition of stomach contents 
or tagging experiments may be collected at completely 
different resolutions to age or length data. 

Here, the proposed sampling unit is based on spatial 
structure on the Icelandic coastal shelf developed by 
Taylor (2003), shown in Figure 1, where the areas within 
the gridlines are referred to as ‘subdivisions’. The spatial 
structure is based mainly on bathymetry, hydrography and 
species assemblages with some further disaggregation 
defined by fishing regulations. In this context an ‘elemen-
tary sampling’ unit consisted of all data collected inside a 
subdivision within a time period of interest. Subdivisions and 
elementary sampling units are therefore used interchange-
ably. In order to reduce correlations between the elemen-
tary sampling units, aggregations are made. For example, 
to remove within-sample correlations between length groups 
(Hrafnkelsson and Stefansson 2004), only (combinations 
of) entire length samples are used, rather than lengths of 
individual fish. Similarly, data are aggregated within the fairly 
large spatial areas and the shortest time-step is at least 
one month. This is intended to eliminate intra-haul correla-
tions (Pennington and Volstad 1994) and those correlations 
between age-groups (Myers and Cadigan 1995) that are 
related to local shoals or small feeding patches. 

To generate input files for Gadget, a second aggrega-
tion method is applied on the elementary sampling units, 
that is all data from a particular subdivision, which varies 
somewhat depending on the data source. Some data types, 
e.g. length distributions, are simply added, whereas others, 
such as mean length-at-age, may go through a computa-
tional mechanism involving age–length keys. A description 
of a fisheries database, able to handle data aggregations 
in this manner, is provided by Kupca and Sandbeck (2003) 
and Kupca (2004). 

Here, the fundamental idea is the aggregation of elemen-
tary sampling units in the creation of model inputs. These 
sets of elementary sampling units can therefore be sampled 
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(with replacement) before aggregation, with each resample 
leading to a new model input dataset. A typical model 
run for parameter estimation based on such a resampled 
dataset will result in a resampled parameter estimate. The 
collection of all such estimates forms a bootstrap sample. 
The procedure could be called a ‘spatio-temporal block 
bootstrap with unequal block size’. 

A fisheri es example
The setti ng
The example marine system used in this paper is based on 
cod in Icelandic waters (Figure 1) with an approach very 
similar to Taylor et al. (2007). The model consists of two 
stock components of cod, i.e. immature and mature cod in 
a single area. Modelling maturity enables the calculation of 
spawning stock biomass and allows different weight–length 
relationships to be used for immature and mature fish.

Two fixed-station surveys are used to monitor the stock 
– in spring and autumn – providing population indices as 
well as biological samples. Landings information is available 
from official databases and raw biological data (length distri-
butions, age compositions), together with survey data, are 
in the Marine Research Institute’s (MRI) databases (see 
e.g. Palsson et al. 1989, Sigurdsson et al. 1997, Taylor 
et al. 2007 and ICES 2011 for a description of data and 
surveys). The technical details of the model are described 
in Supplementary Appendix A (available online). 

The datas et and parameters
The model is a parametric and deterministic forward popula-
tion dynamics simulation model. A single simulation results 
in a complete population structure, including predictions of 

all datasets, as described in Begley (2004) and Taylor et al. 
(2007), and a corresponding evaluation of a (negative log-)
likelihood function (sums of squares in the present paper). 

With the exception of landings data, datasets are used 
only in the likelihood components. For simplicity, landings 
data are used directly in the population models, whereby 
the populations are simply reduced in numbers to be in 
accordance with the corresponding landed weight. Note 
that, in the approach proposed here, the landings data are 
not resampled. 

An overview of the datasets and model parameters used 
in this case study is shown in Tables A.1 and A.2, respec-
tively, in Supplementary Appendix A. 

Estimatio n protocol
The weights on the likelihood components are calculated 
for each model (i.e. each bootstrap run), according to the 
protocol described in Supplementary Appendix A, Section 
A.2.4 (available online), with arbitrary starting parameters. 
This is a two-stage estimation method, where the error 
variances, within a dataset, are estimated by increasing 
the weight on that particular component of the total sum 
of squares, followed by a final minimisation using those 
inverse variances as weights. For a full description of this 
procedure refer to Supplementary Appendix A.

The bootstrapping approach consists of the following: 
• The base data are stored in a standardised database: 

– Time aggregation: 3 months 
– Spatial aggregation: subdivision 
– Further disaggregation is based on a range of catego-

ries including fishing gear, fishing vessel class, sam -
pling type (e.g. harbour, sea or survey). A full listing 
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 Figure 1: The spatial structure of data storage on the Icelandic coastal shelf together with 200 m (broken line) and 500 m (dotted line) depth 
contours. The areas within the gridlines are referred to as ‘subdivisions’. A given time period, time-step size and subdivision are referred to 
collectively as an ‘elementary sampling unit’
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of data types used in the case study can be found in 
Table A.1 of Supplementary Appendix A. These data 
are stored subdivision-disaggregated to allow for use in 
a bootstrap.

• To bootstrap the data, the list of subdivisions, depicted in 
Figure 1, required for the model is sampled (with replace-
ment) and stored. For a multi-area model one would 
conduct the resampling of subdivisions within each area 
of the model. 

• The list of resampled subdivisions is then used to extract 
data (with replacement so the same dataset may be 
repeated several times in a given bootstrap sample). 

• For a single bootstrap Gadget model, the same list of 
resampled subdivisions is used to extract each likelihood 
dataset; i.e. length distributions, survey indices and age–
length frequencies are extracted from the same spatial 
definition. 

• A Gadget model is fitted to the extracted bootstrap 
dataset using the estimation procedure described above. 

• The resampling process is repeated until the desired 
number of bootstrap samples is extracted.
When resampling, data are forced to remain in the correct 

year and time-step, so resampling is based on sampling 
spatially the elementary data units within a given modelled 
unit of time and space. Thus, within a modelled spatial unit, 
the bootstrap is a resampling of subdivisions. This impli citly 
assumes data contained within each area of the model to 
be independent and identically distributed. Independence 
is justified by the definition of subdivisions. Furthermore, 
treating them as if they were from the same distribution, i.e. 
bootstrap replicates, appears to have little negative effect 
when compared to more traditional methods (Taylor 1999). 

The entire estimation procedure is repeated for each 
bootstrap sample. In particular, since the estimation procedure 
includes an iterative reweighting scheme, this reweighting 
is repeated for every bootstrap sample. The point of this 
is that the bootstrap procedure is no longer conditional on 
the weights. The procedure as a whole is quite intensive 
computationally but can easily be run in parallel, e.g. on a 
computer cluster. 

In stark contrast to this, Hessian-based approaches 
usually compute the Hessian only at the final solution. Thus, 
they completely omit the effect of reweighting likelihood 
components when estimating uncertainty. Such methods are 
thus conditional on the weights obtained in a pre-estimation 
stage. 

Applicati on of the bootstrap procedure and its variants
The bootstrap procedure presented here is, as noted 
earlier, quite demanding computationally as the number 
of bootstrap samples increases. In this exercise 1 000 
bootstrap samples were chosen as the ‘baseline’ simula-
tion. This number of iterations was chosen as a practical 
upper limit, as a single optimisation run for a Gadget 
model takes a substantial amount of time. In addition to the 
baseline simulation, two sensitivity tests are considered in 
the present case study. Here it is of considerable interest 
to study possible reduction in the number of bootstrap 
samples and other means to reduce the number of calcula-
tions. An interesting comparison to the baseline simulation 

would be to reduce the number of bootstrap samples to 100 
samples. A more thorough analysis of the effects of sample 
size is described below. 

Another interesting sensitivity test would be a bootstrap 
procedure conditional on weights obtained at the pre-
estimation stage, i.e. using the same (fixed) likelihood 
weights throughout the simulation. The reason for this 
comparison would be twofold: (1) computationally, the 
number of calculations required would be drastically reduced 
and (2) a comparison would be made in relation to Hessian-
based approaches. One should note, however, that with 
this bootstrap the estimation is not the same function of the 
data as the procedure where the weighting takes place for 
each dataset. This may lead to inappropriate weights for a 
given dataset which in turn can, as mentioned earlier, lead to 
inaccurate parameter estimates. 

Hessian-b ased inference
For illustrative purposes the inferences arising from the 
bootstrap procedure presented here are compared to a 
Hessian-based confidence interval (described by Tinker 
et al. 2006, and references therein). In particular, central 
differences were used to calculate the second derivatives 
needed to obtain an estimate of the variance–covariance 
matrix and a multivariate delta method (Oehlert 1992) was 
used to obtain the confidence interval for derived biomass. 
The effects of sample size on the inferences obtained from 
the inverted Hessian matrix were studied using an artifi cial 
increase in measurements. The time-step length was varied 
between one, two and the baseline three months, with input 
fi les being adjusted accordingly. The resulting CVs for the 
recruitment parameters were estimated and the effects of 
the different step lengths contrasted. Similar analysis was 
conducted for the proposed bootstrap procedure but, for 
the sake of clarity, is discussed only in connection with the 
Hessian-based approach. 

Number of  bootstrap samples
With regards to the bootstrap procedure itself this study also 
examines the effect of the number of bootstrap samples 
on the variance and bias estimates using a retrospective 
bootstrap. For a sample number n, ranging from 25 to 1 000 
bootstrap samples, n vectors of parameter estimates from 
the baseline bootstrap were sampled with replacement 100 
times. From those 100 samples the coefficient of variation 
(CV) was calculated for the mean and standard deviation 
of each parameter. Uncertainty in bias estimation is harder 
to quantify in a similar way because parameter bias is often 
estimated close to zero. 

Model output
Given the optimised parameter estimates it is possible to 
output a wide range of descriptors of the model ecosystem 
because Gadget operates on and stores the number in 
each age–length cell for each time-step of the model. For 
this study, the estimated parameters along with a derived 
biomass trajectory (age 4+) are considered. Comparisons 
of uncertainty estimates will be made, as noted earlier, 
using the three bootstrap variants, i.e. both 1 000 and 
100 bootstrap simulations with the iterative reweighting 
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procedure applied to all bootstrap samples and 1 000 
bootstrap simulations using fixed weights, as well as the 
Hessian-based approach. A schematic overview of all 
calculations performed here is shown in Figure 2. 

 Results

The simplest model outputs are the point estimates of 
model parameters. Figure 3 gives histograms of bootstrap 

Bootstrap

Inference method:Baseline

Create a list
of subdivisions

Hessian

Sample sub-

replacement
n = 000 times

list of subdivisions

month time-steps
list of subdivisions

For each n:

on the sampled
list of subdivisions of subdivisions

the iterativethe iterative

each dataset

Estimate model
parameters for
each dataset

Estimate model

Estimate confidence
intervals from the

bootstrap distribution
of parameters and
derived quantities

Estimate confidence
intervals based on

the inverted Hessian

parameters and the 
delta-method for 

derived quantities

Perform a
retrospective

bootstrap on the
model parameters

to determine
adequate number

of bootstrap
replicates

Figure 2: A flowchart of the calculations performed. Boxes indicate action and unbounded text possible uncertainty estimation variants or 
decisions
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estimates of several parameters. It compares the distribu-
tions of those parameter estimates from 1 000 bootstrap 
samples, either using reweighting for each dataset or fixed 
weights, to those using only 100 samples with reweighting. 
For each parameter, the point estimate from the full 
dataset, the median of the bootstrap estimates and 95% 
confidence intervals from a Hessian-based approximation 
are indicated. The differences between the point estimate 
and the bootstrap mean are relatively minor, i.e. there is 
no obvious sign of an estimation bias, in all cases except 
for the length update (see  in Supplementary Appendix A, 
Eqn 3; available online). It should be noted that the matura-
tion parameters are correlated, affecting the relationship 
between the point estimate and bootstrap mean for the 
maturation. The different bootstrap methods exhibit similar 
distribution of parameter estimates, with the exception of 
the length update, where the bootstrap mean based on the 
original weights falls closer to the point estimate, thus failing 
to detect bias in the length update. 

Boxplots can be used to illustrate bootstrapped trajec-
tories of various abundance or biomass measures. The 

estimate of the 4+ biomass is shown in Figure 4. The 
main variation appears, in absolute terms, in the initial and 
final years, while only the final year shows a considerable 
amount of variation in terms of CV. The initial and final years 
are, of course, considerably different from the interme-
diate ones, but in different ways. The number of fish in the 
initial year is part of the estimation procedure and therefore 
of a different nature when compared to subsequent years. 
Further, the survey starts in 1985 (with the model starting in 
1984), which makes the initial conditions somewhat poorly 
determined. The final years, on the other hand, are poorly 
determined, since there is relatively little information in the 
objective function for the younger year classes because 
they have been surveyed for only a few years. 

The same effects are seen for estimated recruitment at 
age 1 (Figure 5) where there is less variation in the earlier 
and intermediate years than the later years. As for the other 
parameters, the Hessian-based confidence estimates are 
considerably smaller than those obtained using bootstrap 
methods. The CVs of the Hessian-based approach followed 
roughly the same pattern as for those arising from the 
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Figure 3: Histograms of the estimated fleet selection parameter af for the three fleets (October [autumn] survey, March [spring] survey, 
commercial catch),  the parameter defining the length update matrix, k the growth rate and l50 the maturity. The parameter estimates were 
obtained from 1 000 bootstrap samples, compared to a smaller number of bootstrap samples, 100, where for both numbers of samples 
iterative weighting applied to all bootstrap samples. This is then all compared to 1 000 bootstrap samples where, in the parameter estimation, 
the weighted likelihood function is conditioned on the original weights. The point estimate (grey broken line) and bootstrap mean (black solid 
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various bootstrap approaches but generally were around 
12% of the corresponding bootstrap CV. 

In Figure 6, CVs for the mean and standard deviation 
of the model parameters are shown as a function of the 
number of bootstrap samples, n, where the separate panels 
show different groups of parameters. The CV estimates 
appear to fall close to 1 n, as shown in the figure, and 
most of them are less than 15% for 100 bootstrap samples. 
The initial conditions, i.e. the numbers at age in 1984, had a 
somewhat higher CV for the mean and standard deviation 

than the other parameter groups. The initial numbers at 
age 8 and 9 in 1984 in particular, showed a considerably 
higher CV for all sample sizes. Those two age groups 
were, as noted earlier, poorly determined, and had a very 
low estimate compared to other initial numbers, as the 
corresponding year classes were present in the data for 
only the first few years of the model. 

Hardly any biases were observed in this analysis. Notable 
exceptions were the length update parameter, shown in 
Figure 3, and the first two years of the 4+ biomass, which 
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Figure 4: Boxplot (top panel) of the end-of-year biomass for cod of age 4 and older estimated on 1 000 bootstrap samples, both using 
iterative weighting for each sample and using the fixed weights for all samples, compared to 100 bootstrap samples. The fixed weights were 
obtained using iterative weighting for the original dataset. The point estimate is indicated by the central black broken line through the boxes. 
The box indicates the interquartile range and the whiskers 95% confidence intervals. Any further outlying data points are indicated as points. 
Bottom panel shows the estimated CV for the age 4+ biomass using the same methods as above 
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appeared to have a measurable bias. This was only 
detected in the bootstrap simulations where the iterative 
reweighting scheme was applied to all bootstrap samples. 
The fixed-weight run and the Hessian-based approach 
failed to detect these differences. 

The effects of the number of time-steps within a year 
can been seen in Figure 7. There the CV of recruitment 
is illustrated as a function of the number of (intra-year) 
time-steps in the model. The number of time-steps appears 
to be inversely proportional to the CV size. These effects 
were not, when varying the time-step, observed when 
conducting a similar analysis using the bootstrap. 

Dis cussion

This paper has presented a novel bootstrap method suitable 
for models of population dynamics. Several modifications 
and alternatives to the original bootstrap methodology 
(Efron 1979; Efron and Tibshirani 1994) have been 
presented. For example, to account for correlations in simple 
non-replacement sampling schemes (as used for most 
questionnaires or ‘sample surveys’), without-replacement 
bootstraps and with-replacement bootstraps have been 
suggested, along with somewhat-more-general resampling 
procedures for complex survey data (Gross 1980; McCarthy 
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Figure 5: Boxplot (top panel) of the number of recruits (age 1) in each year estimated by 1 000 and 100 bootstrap samples compared to 
1 000 bootstraps with fixed weights and a Hessian-based approximation to the 95% confidence interval. The point estimate is indicated by 
a central black broken line through the boxes. Bottom panel shows the estimated CV for the recruitment using the same methods as above 
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and Snowden 1985; Rao and Wu 1988; Sitter 1992). 
Theoretical assumptions and derivations behind these 
approaches do not easily extend to the present situation with 
disparate datasets, composite likelihoods in the estimation 
phase and, last but not least, the highly non-linear population 
dynamics models used as a basis for obtaining predicted 
values and error sums of squares or likelihood functions. The 
‘trick’ in the current proposal is not a theoretical development 
but is the methodology of having the bootstrap sampling unit yi 
as a collection of all relevant datasets sufficiently aggregated 
such that they can be assumed to be independent. 

Some of the modifications of the original bootstrap have 
been developed for marine surveys (Smith 1997) but this has 

been intended to reflect e.g. the sampling design used for the 
surveys and simple estimation of quantities such as a strati-
fied mean. In the present setting the data need to go through 
an aggregation procedure to be used in a non-linear popula-
tion dynamics model and it is the output of this model which 
is of interest, not variances in the input. Thus, there is a need 
for the bootstrap to mimic this aggregation procedure for the 
full data from raw data or finer-scale aggregates. This is the 
case with any population dynamics or assessment model, 
used in fisheries or other areas of resource harvesting, 
particularly in a multispecies and multi-area context. 

The methodology proposed here is certainly computation-
ally intensive. However, this is also the case for many other 
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Figure 6: Results of a retrospective bootstrap sampling on the parameter estimates from the 1 000 bootstrap samples, with iterative 
weighting applied to all samples. This retrospective bootstrap studies the variation of the mean and standard deviation of each parameter 
estimate by calculating the coefficient of variation (CV) as a function of the number of bootstrap samples, n, of both the mean and standard 
deviation (SD). A point on the graph shows the CV of the mean (panels on the left hand side) or SD (panels on the right hand side) for a 
particular parameter and number of samples, n. The different panels contain the CVs of the initial number at age (νa in Supplementary 
Appendix A, Eqn 6, available online), other variables i.e. the variables which are shown in Figure 3, and yearly recruitment shown in Figure 5 
(Ry in Supplementary Appendix A, Eqn 5). CV of the initial number at ages 8 and 9 are illustrated with solid and broken lines respectively. For 
comparison, 1 n  is shown (thick grey line) on all panels 
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methods. For example, the MCMC evaluation of a Bayesian 
posterior involves a simulation of a correlated time-series 
whose stationary distribution is the posterior. This process is 
not trivially parallelisable over an arbitrary grid of computers 
(some of the difficulties are described in Wilkinson 2006). In 
comparison, the bootstrap approach described here is fairly 
trivially distributed onto a computer cluster. 

To make the bootstrap proposed here more feasible, one 
could reduce the number of resampled datasets. Using 100 
bootstrap replicates instead of 1 000 yields satisfactory 
results in terms of variance estimation, allowing a drastic 
reduction in the computing time needed. Conditioning on 
the weights from the original sample could further reduce 
the time needed but, judging by the results presented here, 
possible estimation biases may be harder to detect. 

When compared to the bootstrap the Hessian-based 
approximation appears to underestimate the uncertainty 
by a factor of eight. This may seem contrary to previous 
results. Magnusson et al. (2013), using a simple catch-at-
age simulation model, concluded that the MCMC method 
and the Hessian-based approach performed similarly. 
Recently, in Stewart et al. (2013), an MCMC and a Hessian-
based approach performed similarly for real applications. 
The notable difference between the model described here 
and the aforementioned approaches is the objective function 
used here and the total number of data points (defined in 
Supplementary Appendix A, Section A.2.4; available online) 
used in the estimation process. The objective function 
consists of simple sums of squares that ignore potential 

correlations and tend to exaggerate the confidence level 
in the Hessian-based approach as the number of data 
points increases. This is illustrated in Figure 7 where it 
appears that the main factor in determining the size of 
the CV is the number of data points in the input files. 
Scale changes, such as aggregating data to larger length 
groups or increasing the size of the plus group by lowering 
the modelled maximum age, would in this case increase 
the size of the CV by simply reducing the number of data 
points. In contrast to the approach used here, a multi nomial 
model, where the degrees of freedom are estimated, is often 
employed on catch-at-age (e.g. Trenkel et al. 2012) but 
length distributions, in the case of Icelandic cod, have serious 
distributional problems (Hrafnkelsson and Stefansson 2004). 
Future work on the model could potentially evaluate different 
distributional assumptions similar to those suggested above 
using the proposed bootstrap approach. 

In this particular case study there were no discernible 
biases detected. Thus, the consequences of the Hessian-
based approach appear to be restricted mostly to narrower 
confidence intervals. However, it is reasonable to assume 
that inconsistencies arising from conflicting data sources 
(e.g. in Schnute and Hilborn 1993; Stefansson 2003) would 
not be detected without analysing the effects of their relative 
weights. On the other hand, incorrect variance estimates 
may directly affect how annual catches are set. This occurs, 
for example, if a harvest control rule were to be based on a 
probabilistic measure such as that of a biomass not falling 
below a threshold, or a TAC not deviating too much from a 
target. 

It is of considerable interest to compare the proposed 
bootstrap method to MCMC methods used in the Bayesian 
framework. This is, however, outside the scope of this 
study as it would require a considerable effort to adapt the 
Gadget framework to the Bayesian one. Future work could 
potentially focus on the evaluation of the two methodologies 
applied both on simulated datasets and for real applications 
in similar manner to Hannesson et al. (2009). 

It is reassuring that the modelled years in which the 
greatest uncertainty is found are those where it is expected 
i.e. the initial year and then increasing towards the end 
of the modelled time period. The first year is the most 
data-poor, with no survey data or age–length compositions, 
and towards the end of the time period there are fewer 
cohorts with data available for most ages. 

The method described here is designed to alleviate several 
known problems with other methods of uncertainty estima-
tion. Several issues remain, however. For example, if a 
model is too ‘stiff’ through fixing parameters or other assump-
tions, then this may not be detected here except in special 
cases. These considerations could be explored by different 
models, e.g. split the commercial fleet component by gears, 
which can be implemented within the Gadget framework. On 
a related note there is also a balance to be found between 
estimation errors due to too-small size classes and distri-
bution error caused by too-large size classes (Vandermeer 
1978). It is therefore of interest to investigate the effects 
of the choice of scale such as size-class width but also 
time-step (Drouineau et al. 2009). The relative merits of these 
models can then be evaluated using an approach similar 
to the one proposed here. Similarly, different modelling 
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Figure 7: The CV of recruitment arising from the inverted Hessian 
by year as the number of intra-year time-steps is increased (upper 
panel). The bottom panel shows the ratio of the CV of the model with 
3-month time-steps to the models with 2-month and 1-month steps
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approaches, such as the different data weighting discussed 
in Francis (2011) or Hu and Zidek (2002), can be also be 
compared using the bootstrap technique presented here. 
Ultimately, each reweighting scheme is a different method 
for obtaining a point estimate and the bootstrap is a perfectly 
general method to obtain variance estimates. 

When designing an aggregated database to be used for 
modelling, several issues need to be taken into account. 
The most important statistical condition on the choice of 
the ‘data units’ is that correlations between them should 
be minimal. On the other hand, there also needs to be a 
fair number of them within each model area if the bootstrap 
mechanism is to provide some variation in results. For a 
given measurement type one can, in many cases, investi-
gate spatial correlation or variograms to determine the 
distances at which those become negligible (Petitgas 2001). 
This cannot easily be done for many data types, however 
(age–length tables, tagging experiments, etc.). In fact, the 
original reasoning for the areas used in this paper was 
ecological (Stefansson and Palsson 1997b; Taylor 2003) 
rather than based on spatial correlation, and it is likely 
that in most real situations data will be aggregated either 
according to such criteria or pragmatically into ‘statistical 
rectanglesʼ of some form. 

Simple bootstrap resampling usually assumes that the 
elementary data units, {y1,...,yn}, behave like independently 
and identically distributed samples. Data in fisheries tend to 
be collected in a somewhat stratified manner, ranging from 
formal stratification to attempts to ‘spread out’ sampling, 
across gears, time and space. In the present setup this 
is simply ignored. This can be justified when the data are 
aggregated in a simple manner anyway (through sums 
or averages), since the bootstrap method then mimics 
the computation accordingly and/or when there is a large 
number of data units which can be viewed as representing 
a population of such units. In cases when one or a few of 
the subdivisions represent e.g. a spawning area, and the 
intended analysis is stratified accordingly, this approach 
can clearly not be used since then the bootstrap resampling 
does not reflect the computational method in use. When 
such issues arise, whether with respect to fishing gear, 
space or other units, an appropriate approach is to include 
these elements in the model. For example, the likeli-
hood function can incorporate the various fishing gears, 
modelling each selectivity separately. The resampling then 
takes place separately for each gear. 
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